

Кондуктометрические датчики уровня KIPVALVE КДУ-1

Кондуктометрические датчики уровня KIPVALVE КДУ-1 предназначены для контроля уровней электропроводящих жидкостей (таких как: вода, молоко, слабокислотные или щелочные жидкости) в различных сосудах, в том числе находящимися под давлением.

Контроль уровня жидкости кондуктометрическим методом основан на измерении сопротивления (электропроводности) между электродами (см. рисунок ниже). Один из электродов является общим, а остальные сигнальными. Общий электрод должен быть самым длинным и постоянно находиться в жидкости. Длина сигнальных электродов определяется высотой контролируемого уровня. В момент, когда общий электрод погружён в жидкость, а сигнальный электрод не погружён в жидкость, между электродами находится воздух и проводимость между электродами отсутствует. В этом случае на регуляторе отсутствует сигнал. В момент, когда уровень жидкости достигает сигнального электрода, происходит замыкание цепи между общим и сигнальным электродом через жидкость. В этом случае на регулятор поступает сигнал о достижении контролируемого уровня.

Количество сигнальных электродов может быть различным и определяется возможностями регулятора, к которому подключаются кондуктометрические датчики КДУ.

Кондуктометрические датчики KIPVALVE серии КДУ выполняют роль проходного изолятора, который позволяет установить сигнальный электрод (стержень) в ёмкость таким образом, что электрод полностью изолирован от корпуса ёмкости.

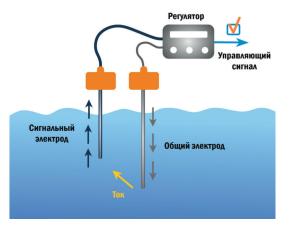
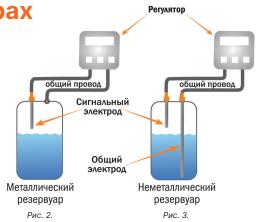



Рис. 1.
Принцип работы кондуктометрических датчиков уровня

Применение кондуктометрических датчиков для контроля уровня в металлических и неметаллических резервуарах Регумтор

В металлических резервуарах (рис. 2) количество применяемых сигнальных электродов соответствует числу контролируемых уровней, а в качестве общего электрода может использоваться корпус резервуара. В этом случае достаточно приобрести один или несколько кондуктометрических датчиков (в зависимости от количества контролируемых уровней) с электродами (стержнями) необходимой длины.

В неметаллических резервуарах (рис. 3) количество используемых датчиков должно быть на один больше, чем число контролируемых уровней, поскольку один из них будет использоваться для установки общего электрода (стержня).

Отличительные особенности кондуктометрических датчиков KIPVALVE серии КДУ

Наименование параметра	кду-1
Материал изолятора	Фторопласт
Материал датчика контактирующий со средой	AISI 304
Установочная резьба датчика	M20x1.5 - стандартно, G1\2 и иное присоединение под заказ
Установочная резьба электрода (стержня*)	M3
Температура рабочей среды, не более	200 C
Давление рабочей среды, не более	2,5 МПа
Разборный корпус	да

^{*-} стержни приобретаются отдельно

Габаритные размеры

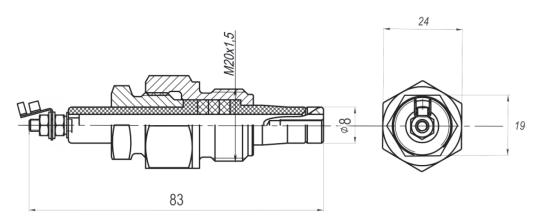


Рис. 4. Габаритные и установочные размеры датчика КДУ-1

Структура условного обозначения

^{*} Иное по согласованию заказчика.